15,380 research outputs found

    Measuring the transition to homogeneity with photometric redshift surveys

    Full text link
    We study the possibility of detecting the transition to homogeneity using photometric redshift catalogs. Our method is based on measuring the fractality of the projected galaxy distribution, using angular distances, and relies only on observable quantites. It thus provides a way to test the Cosmological Principle in a model-independent unbiased way. We have tested our method on different synthetic inhomogeneous catalogs, and shown that it is capable of discriminating some fractal models with relatively large fractal dimensions, in spite of the loss of information due to the radial projection. We have also studied the influence of the redshift bin width, photometric redshift errors, bias, non-linear clustering, and surveyed area, on the angular homogeneity index H2 ({\theta}) in a {\Lambda}CDM cosmology. The level to which an upcoming galaxy survey will be able to constrain the transition to homogeneity will depend mainly on the total surveyed area and the compactness of the surveyed region. In particular, a Dark Energy Survey (DES)-like survey should be able to easily discriminate certain fractal models with fractal dimensions as large as D2 = 2.95. We believe that this method will have relevant applications for upcoming large photometric redshift surveys, such as DES or the Large Synoptic Survey Telescope (LSST).Comment: 14 pages, 14 figure

    Dimensionality reduction and spectral properties of multilayer networks

    Full text link
    Network representations are useful for describing the structure of a large variety of complex systems. Although most studies of real-world networks suppose that nodes are connected by only a single type of edge, most natural and engineered systems include multiple subsystems and layers of connectivity. This new paradigm has attracted a great deal of attention and one fundamental challenge is to characterize multilayer networks both structurally and dynamically. One way to address this question is to study the spectral properties of such networks. Here, we apply the framework of graph quotients, which occurs naturally in this context, and the associated eigenvalue interlacing results, to the adjacency and Laplacian matrices of undirected multilayer networks. Specifically, we describe relationships between the eigenvalue spectra of multilayer networks and their two most natural quotients, the network of layers and the aggregate network, and show the dynamical implications of working with either of the two simplified representations. Our work thus contributes in particular to the study of dynamical processes whose critical properties are determined by the spectral properties of the underlying network.Comment: minor changes; pre-published versio

    Isocausal spacetimes may have different causal boundaries

    Full text link
    We construct an example which shows that two isocausal spacetimes, in the sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which are not equal (more precisely, not equivalent, as no bijection between the completions can preserve all the binary relations induced by causality). This example also suggests that isocausality can be useful for the understanding and computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the published version. 12 pages, 3 figure
    • …
    corecore